skip to main content


Search for: All records

Creators/Authors contains: "Aristov, Michael M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nitrogen heterocycles are a class of organic compounds with extremely versatile functionality. Imidines, HN[C(NH) R ] 2 , are a rare class of heterocycles related to imides, HN[C(O) R ] 2 , in which the O atoms of the carbonyl groups are replaced by N—H groups. The useful synthesis of the imidine compounds succinimidine and glutarimidine, as well as their partially hydrolyzed imino–imide congeners, was first described in the mid-1950s, though structural characterization is presented for the first time in this article. In the solid state, these structures are different from the proposed imidine form: succinimidine crystallizes as an imino–amine, 2-imino-3,4-dihydro-2 H -pyrrol-5-amine, C 4 H 7 N 2 ( 1 ), glutarimidine as 6-imino-3,4,5,6-tetrahydropyridin-2-amine methanol monosolvate, C 5 H 9 N 3 ·CH 3 OH ( 2 ), and the corresponding hydrolyzed imino–imide compounds as amino–amides 5-amino-3,4-dihydro-2 H -pyrrol-2-one, C 4 H 6 N 2 O ( 3 ), and 6-amino-4,5-dihydropyridin-2(3 H )-one, C 5 H 8 N 2 O ( 4 ). Imidine 1 was also determined as the hydrochloride salt solvate 5-amino-3,4-dihydro-2 H -pyrrol-2-iminium chloride–2-imino-3,4-dihydro-2 H -pyrrol-5-amine–water (1/1/1), C 4 H 8 N 3 + ·Cl − ·C 4 H 7 N 3 ·H 2 O ( 1 ·HCl). As such, 1 and 2 show alternating short and long C—N bonds across the molecule, revealing distinct imino (C=NH) and amine (C—NH 2 ) groups throughout the C—N backbone. These structures provide definitive evidence for the predominant imino–amine tautomer in the solid state, which serves to enrich the previously proposed imidine-focused structures that have appeared in organic chemistry textbooks since the discovery of this class of compounds in 1883. 
    more » « less
  2. A new and growing library of 3D models that can be utilized to illustrate many important concepts in the field of crystallography is presented. These models are accessible in the classroom via computers and smartphones and offer significant advantages over 2D depictions found in crystallography textbooks. Through the use of Blender , a free 3D modeling and animation program, over 100 new models focusing on different aspects of crystallographic education have been created. To simplify distribution/access, all of these models have been uploaded to Sketchfab, a model hosting and viewing web site that works similarly to YouTube. The current set of models is also given as a list in the supporting information. All of these models are free to view in a web browser or through a smartphone application. Additionally, all of these models are freely downloadable through the supporting information and Sketchfab, and users are encouraged to download and modify these models to best suit their needs. This library of models is part of the authors' ongoing outreach program to provide 3D models for free for educational purposes, and the authors offer their services to create additional models and moderate this library as additional requests or critiques are provided. 
    more » « less
  3. null (Ed.)
  4. Abstract

    We have developed the first intermolecular hetero‐[5+2] cycloaddition reaction between oxidopyrylium ylides and cyclic imines with excellent control of regio‐ and stereoselectivity. Surprisingly, divergent stereochemistry was observed depending on the substitution pattern of the oxidopyrylium ylide. This new reaction provides quick access to highly substituted nitrogen‐containing seven‐membered rings—azepanes. Notably, a broad range of oxidopyrylium ylides and cyclic imines participate in this novel hetero‐[5+2] cycloaddition reaction and the cycloadducts can be readily transformed into the core skeletons of bioactive natural products. DFT calculations revealed that the cycloaddition proceeds through a stepwise pathway and the imine nitrogen atom serves as the nucleophile to initiate the cycloaddition.

     
    more » « less